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Summary

The relationships among the retention time, elution curve shape, and the
zeroth and first partial normal moments are evaluated under conditions
in which slight, moderate, or severe lateral mass transfer control exists.
The elution curve and its moments are characterized by a single dimen-
sionless group, ¢, which is a measure of the rate of diffusional mass
transfer into the stationary phase relative to the rate of mobile-phase
convective mass transfer in the axial direction. Closed form solutions
are given for a discrete description (a one-term approximation to the
distributed description) of the stationary liquid phase. The dimension-
less retention time is derived as a function of ¢ and the results compared
to recently published experimental observations. The first normal
moment is not invariant with respect to lateral kinetic phenomena when
proper account is taken of the experimental restriction of a finite cutoff
time.

INTRODUCTION

In a previous paper (1), we have derived and discussed the proper-
ties of the column characteristic, G, an important transform quantity

383
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that contains all of the dynamic information of interest in elution
chromatography. Such information may be extracted from G by taking
successively higher normal moments. For example, the first normal
moment, uf, for an impulse input can be calculated from (1),

u;=j~1+:—j§11§33)t<c;+p%§—f> (1)
where z is set at L, the column length; v, is the velocity of the mobile
phase; and e/¢, is the ratio of the volume fractions of the stationary
and mobile phases.

Certain problems exist in the interpretation of the normal moments,
however, particularly when severe mobile-phase mass transfer control
or stationary-phase diffusion control exists (2). For these conditions
it is no longer possible to experimentally “integrate” to infinite time,
as required by the formula for the mth normal moment,

/ * tmeyy dt

’ 0

Hm =
/ Ciy dt
0

As a consequence, the elution time of the chromatographic peak is
no longer dictated by the equilibrium distribution coefficient. Little
and Pauplis (3), Oberholtzer and Rogers (4), Kelley and Billmeyer
(5), and Habgood and MacDonald (6) have recently described situa-
tions in which this type of phenomenon may exist.

It is the purpose of this paper to present numerical and analytical
solutions to the conservation-of-mass equations characterizing a
simple chromatographic system. The derivation of the general equa-
tions, such as Eqgs. (1) or (3), has been presented in detail elsewhere
(1). A significant result of our calculations is the fact that the shape
of the elution curve is completely described by a single dimensionless
group, ¢, which is a measure of the rate of diffusion mass transfer
into the stationary phase relative to the convective mobile-phase mass
transfer in the axial direction. Although presented for a simple capil-
lary column, the theoretical results can be extended to other situations
if ¢ is properly interpreted.

@

IMPULSE RESPONSE

We have previously shown (I) that the elution output from a
chromatographic column for a unit impulse input is given by
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L Lea s L
(b= i) = fen - 2eely (50) o

where @, the column characteristic, is

4 _ Cizjay + izia
GE 12| vé.1 i3|Av (4)
i

éi1 is the Laplace transform of the concentration of component ¢ in
the mobile phase, and é;. and é;; are the Laplace transforms of the
free and complexed component in the stationary phase. The subscript,
Av, represents a lateral spatial average of the indicated quantities.
The exponential parameter, y, employed by Schneider and Smith (7)
is closely related to G.

For the simple ecapillary ecolumn shown in Fig. 1, the column
characteristic is (1)

C, (L /\

y=0 0 t
Ny —z=L

/—Gos Phase
. Liquid Film
1, —wan

I
I

3
;

) R

Cil
[(oX)) z
7/ z-

O t/’/’T -0

Capillary Column

FIG. 1. Capillary chromatographic system.
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G = ki tar;}; 9@ Distributed liquid film (5)
8 Dy,
A 3 a . . .
G = ke 8 Da Discrete approximation (6)
P+ 32
where
P
2 =
=7 @
@2 o< R (8)
iy ora

Evaluation of the inverse transform given by Eg. (3) will furnish
the elution curve which, with the aid of the convolution integral for
Laplace transforms, can be used to determine the response to any
type of column input.

The equations can be nondimensionalized by introducing the fol-
lowing variables

_ 1
r-— ©)
La
to = 21)—1 R ki (10)
_16La Do
d’"SleKﬁ 2 (11)

The characteristic time, ¢,, is that contribution to the first normal
moment made by the mass transfer process, and the parameter ¢ is
a measure of the rate of diffusional mass transfer into the liquid film
relative to the rate of mass transfer by convection in the axial
direction.
With these changes of variables, the impulse response becomes
g tanh \/ g—z
tca(L,r) = £ <exp | — p ———— (12)
( 5
3¢
for the distributed liquid film and
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toca(L,7) = £ {exp (— p—ﬁ%)} (13)

for the discrete liquid film. The dimensionless elution curves given
by Eqgs. (12) and (13) are completely determined by the parameter ¢.

SOLUTION FOR DISTRIBUTED LIQUID FILM

We were unable to obtain a closed form solution of the inversion
indicated in Eq. (12). A numerical inversion was obtained, however,
and is shown in Figs. 2 and 3 for two different values of ¢. The solid

8 T T T T T T T

to G (L,7)

0 1 i 1 1 1 1 1 1

(o] 2 4 ] 8 10 12 14 1% 18
T
FIG. 2. Solutions to Eq. (12) [solid line] and Eq. (13) [dashed line] for
¢ —4.75.

lines give the numerical results for the distributed liquid film model,
whereas the dashed lines are analytical solutions for a discrete descrip-
tion of the liquid film that will be discussed in the following section.

Wing's method for the inversion of Laplace transforms (8) was
employed. We encountered problems in the a priori selection of certain
of the parameters required for the numerical inversion. For this and
other reasons that will become evident later, the analytical solution
was preferred even though it was only an approximation to the true
solution.

SOLUTION FOR DISCRETE LIQUID FILM

We have previously shown that the discrete description of the
liquid film—a variation of the lumping procedure originally described
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70 T — 1 T T
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20

FIG. 3. Solutions to Eq. (12) [solid line] and Eq. (13) [dashed line] for
¢ = 475.

by Funk and Houghtdn (9)—is, in a sense, a one-term approximation
to the distributed model, and have suggested a procedure for the
determination of ¢ via a single-stage experiment (7). By means of
the substitution theorem for Laplace transforms, Eq. (13) becomes

0 T <0
e~ D[18(tyr) + £L1et? — 1}] r>0

The inverse transform of Eq. (14) is given in the Bateman tables
(20),

tocir(L,m) = { (14)

£ et — 1} = 5 11(29r) (15)
Therefore, the final desired solution is

0 r<0

b+ [toa(toT) + T_‘f’ﬁ 11(2457_1/2)] r>0 (16)

tocn(L,r) = {

where (for) is a unit impulse at + = 0 and I, is the modified Bessel
function of order unity.
Equation (16) is shown as the dashed line in Figs. 2 and 3. The
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information contained in the elution curves is more easily and accu-
rately obtained from Eq. (16) than from the numerical inversion.
The ease in handling and the flexibility of a closed form solution is
clearly preferable to the numerical inversion results.

The first term in the brackets in Eq. (16) represents an impulse
at =0, corresponding to the column transport time of L/v,. The
integrated area of this impulse is ¢ %, which is the fraction of the
component that has passed through the chromatographic column
without permeating the stationary phase. This fraction has a value
of unity when ¢ = 0 and a value of zero when ¢ - . The second
part of the elution curve described by Eq. (16) is a skew Gaussian or
a decaying exponential for all + > 0 and ¢ =~ 0.

Elution curve profiles, corresponding to Eq. (16), for various values
of ¢ are given elsewhere (2). For ¢ = 0, the response to a unit impulse
is likewise a unit impulse at + = 0. As the value of ¢ is increased,
the magnitude of the impulse at r = 0 decreases and, for ¢ > 2, a
peak maximum develops. As ¢ 1s increased beyond 2, the peak maxi-
mum moves toward = 1 and the elution curve sharpens. The elution
curve approaches a unit impulse at - = 1 when ¢ becomes very large.
The over-all type of behavior'is shown schematically in Fig. 4.

'/Impulse impulse
4 for ¢ =0 for ¢ ~©
7
¢‘ < ¢2<""<¢6 < ¢7 (
B
LM 6
5
4 \
3
2
|
o < = —>-
(o} ]
Lv] Iv'.“ + xlz) Time

FIG. 4. Schematic behavior of elution curves as a function of ¢. K:» is a
gas-liquid distribution coefficient (2).
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PARTIAL NORMAL MOMENTS

We have previously defined the partial normal statistical moment,

Bmy as (2)
[) “ tmen(Lb) dt
fm = -
[) ea(L,t) di

For the system described in this paper, i, becomes

tc Tc L/Ul m
fm = t’”c“(L,t) dt = tBn T —l" tocn(L,T) dr
L

0 to

b1

where 7, is a dimensionless cutoff time,

From Eq. (16), we first obtain

fo = e—¢ + /; e—¢U+n) ,,.(32 11(2(]51'1/2) dr

and

= fﬁo + to / e $UtDGrII] | (2pr'1?) dhr
1 0

(17)

(18)

(19)

(20)

(21)

for the zeroth and first partial normal moment, respectively. With

the aid of Eq. 813.3 in Dwight’s tables (11),

-
¢2n7.n

Lo = o )

n=0

and the following gamma function definitions,
v+ L) = [ e dv

y(n + 2,0,) = ﬁ)” pr+le= dy

where

(22)

(23)

(24)

(25)
(26)
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Eqgs. (19) and (20) become

w0

o= bk g ) O 1) (21)
n=0
~=£"+te”¢z o v(n 4 2,) (28)
M1 ” Mo 0 ny(n + 1), Ve
n=0

Equations (16), (27), and the quantity, {[a, — (L/v,) @0l /t}, in
Eq. (28) are shown as a function of 7 in Figs. 5 through 7. As ¢ — 0,

10 T T T T T
- —/— -
B —
-
0.8+ _S/ —
L // //_1
0.6/ // -
PR
- ¢ // —
o4  $=05 % -
’
L /// _
0.2 4 1
\Q;A‘\ |
Ld
0 —”l 1 1 H
0 2 4 [

Dimensioniess Time, T

FIG. 5. Plot of Eq. (16) [Curve Al, Eq. (27) [Curve B], and the quan-
tity [ — (L/v1) Bolty [Curve C1 as a function of = for ¢ = 0.5.

Ao approaches a step change at » = 0 and both t,c::(L,7) and {[4 —
(L/vi)fic]/t:} approach zero. As ¢ — 0, toci;(L,7) approaches a unit
impulse at =1 and both g, and {[a — (L/v:)io]/ts} approach
a step change at + = 1. For large values of ¢, the value of the first
normal statistical moment and the retention time (location of peak
maximum) become identical. For small values of ¢ and a finite cutoff
time, t., the relationship among the retention time and the moments
must be evaluated carefully. Other consequences of these results are
presented in detail elsewhere (2).
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10 T T T T -
-
-

B // //’

0.8t —\/ - -
7
/s c e

o6l / V4 i

’ / $=10

Dimensioniess Time, T

FIG. 6. Plot of Eq. (16) [Curve Al, Eq. (27) [Curve B], and the quan-
tity [gn— (L/v) @/t [Curve Cl as a function of = for ¢ =10.

o8r

o6

04r-

0.2
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/
27
(o] k) | i 1 1
0 0204 0608 10 12 14 16 18 2022

Dimensioniess Time, T

FIG. 7. Plot of Eq. (16) [Curve Al, Eq. (27) [Curve B, and the quan-
tity [g— (L/v:)@]/te [Curve Cl as & function of r for ¢ =20.
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NORMAL MOMENTS

The normal moments, p,,, can be calculated from the partial normal
moments, g,, by taking the following limit,

o = limit gn (29)

| ]

By the application of the following relationships,

limit v(n 4+ 1,»;) = n! (30)
limit y(n 4+ 2,») = (n + 1)! (31)
2= e (32)
n=0
" e
2(n+ o= (33)
n=0

Equations (27) and (28) reduce to

limit go = 1 (34)
.. L L
limit by = U_1 + to = l_)-l <1 “+ ki Z) (35)

We have thus shown that correct results are obtained for the
zeroth and first normal moments when +,— oo. We further observe
that the integral summations in Egs. (27) and (28) are the con-
tributions to the zeroth and first moments from the mass transfer
process.

RETENTION TIME

The retention time, 5z, is that value of 7 for which the elution
curve of Eq. (16) i1s a maximum (or that value for which the first
derivative with respect to = is zero). This time can be obtained
as a function of ¢ by solving the following equation,

L(2¢ Vrr) _ ¢ Ve
Io(2¢ Vre) 1+ e

Use of the small-value approximation to the Bessel functions, in

(36)
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which the first two terms of the approximation are included, simplifies
Eq. (36) to

e~ é(l _ %) (smallg)  (37)

Equation (37) clearly indicates that no peak in the elution curve
will develop for values of ¢ less than 2. The development of the peak
as ¢ is increased beyond 2 is shown in Fig. 8.

06 T T T T T T
T O4r i—w
- 25
- 2.2
i
- 19
02r- 107]
N J
| ) L i | !
(o] 0.2 04 06 08 1.0 1.2

Dimensionless Time, T

FIG. 8. Plot of Eq. (16) as a function of = for values of ¢ near 2.0.

In Fig. 9, the dimensionless retention time, 7z, is plotted versus
the inverse of ¢. As indicated by Eqs. (9) through (11), rz may be
interpreted as a dimensionless retention (or elution) volume and ¢~
as a dimensionless flow rate. This can most clearly be seen if we
recast Eqs. (9) and (11) into the following forms,

7|'R21)1t[g — wR*L _ VR - Vc

TR = T onaRLk:  2maRLka
(1)_1 - 1FR21)1 _ Q
8 Di - 8 Di
3 a22 - 2raRLkss 3 a22 - 2raRLk;s

where V; is the retention volume, V¢ is the column void volume, and
Q is the volumetric gas flow rate (units of em?®/sec). Thus, as the
velocity v, increases, ¢ increases and 7 decreases, a conclusion that
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10 T T T T
o8- -
s 08| =
o4l —
o2t -
) 1 ] ] ]
) ol 02 03 04 OS5

¢-|
FIG. 9. Solution of Eq. (36).

has experimental support in the data of Oberholtzer and Rogers (4)
and Little and Pauplis (3). Further, a longer column or a lower flow
rate decreases ¢ and thereby enhances the development of a peak.
These effects on peak development have been discussed by Habgood
and MacDonald (6), who arrived at their conclusions in a different
manner.

For large values of ¢, the dimensionless retention time can be
obtained from the large value approximation to Eq. (16)

(1 — V77

tocar(L,7) = éiiw &P [_¢T3/4 (large ¢) (38)

The impulse at + = 0 has been neglected since its magnitude is neg-
ligible for large ¢. Equation (38) is shown as the dashed line in Fig.
3; the approximation to Eq. (16) is quite good for large values of ¢.
The value of the peak height is given by the equation,

taca(L,1) = \/3 (largeg) (39
4
The value of 75 from Eq. (38) is

o= 1= 3¢ (largeg)  (40)

which, in terms of Vg, Ve, and @, can be recast as



14: 32 25 January 2011

Downl oaded At:

396 P. R. RONY AND J. E. FUNK

2
V= Ve (1 + 2 ) —Hh-Q  (aged) @D
Equation (41) describes the results given in Figs. (3) and (4) in
the paper by Oberholtzer and Rogers (4) and indicates that a straight
line with a negative slope is to be expected.
By making suitable approximations and using Eq. (38), it can be
shown that

L/’ LY
sww =3 (14 5) - %’(l + 57) (arges) (42

E Kq2
and

2

2L 1 a? 2

HETP = — ———C = {7 77— (large¢)  (43)
D; 2 ge ¢
? (1) 2(1+%’m)
4]

where NTP and HETP are the number of theoretical plates and
height equivalent of a theoretical plate, respectively. The similarity
between these equations and previous ones, such as that of Giddings
(12), is noted. Details of the derivations are available upon request
to the authors.

MOBILE PHASE RESISTANCE TO MASS TRANSFER

The effect of resistance to mass transfer in the mobile phase may
also be incorporated into the above solutions by noting that
G = Cirjan _ Cinav Caa (44)

= Py

Ci1 ¢ €a
If k; is the mass transfer coefficient (units of em/sec), the flux-
matching condition at the stationary-mobile phase interface is
dCaz
2 T
Y |y=a
where ¢;; — c} is the concentration drop across a very thin film near
the surface of the stationary phase. The resulting expressions for G are

kf(Cil - C‘:l) =D (45)

G = tanh ga 1
qa

p Distributed (46)
i2 .
1 + m qa tanh qa
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§ Di2 1
2 .
G = k2 Discrete approximation  (47)
8 Dy 1
¥ 3a 1 8 Kkiz
3 Nu

where Nu = ksa/D;, is a Nusselt number for mass transfer.

Equation (46) indicates that a substantially different function of
p must be inverted to obtain the elution curve when a distributed
representation of the liquid film is employed. On the other hand,
Eq. (47) states that the parameter ¢ must simply be corrected by
the factor 1/[1 + (8/3) (xiz/Nu)] when the discrete description is
used. As k; - o, this factor approaches unity and as k;— 0, it
approaches zero, The curves shown in Figs. 3 and 4 in Ref. 2 there-
fore incorporate the effect of mobile-phase resistance to mass transfer,
provided that this effect is included in the calculation of ¢.

CONCLUSIONS

We have shown that the elution curve shape and its moments are
characterized, at least for linear chromatography, by a single dimen-
sionless group, ¢, which is a measure of the rate of mass transfer
into the stationary phase by diffusion relative to the rate of mass
transfer in the axial direction by convection. Both a distributed and
a lumped description of the liquid film are presented; a numerical
inversion of the distributed description is shown. The lumped, or
discrete, description for the liquid film is, in a sense, a one-term
approximation to the distributed representation; closed form solutions
are given for the elution curve and the zeroth and first partial normal
moments. The dimensionless retention time, rz, is shown as a function
of ¢ and the results compared to the recently published experimental
observations of other investigators. The effect of a stationary-phase
resistance to mass transfer is also considered.

The relationship among the retention time, elution curve, and the
zeroth and first partial normal moments can be evaluated quantita-
tively by means of the equations presented in this paper, even under
conditions in which severe lateral mass transfer control exists. Further-
more, the results show that the first normal moment is not invariant
with respect to lateral kinetic phenomena when proper account is
taken of the experimental restriction of a finite cutoff time.



14: 32 25 January 2011

Downl oaded At:

398 P. R. RONY AND J. E. FUNK

List of Symbols

a thickness of liquid film (em)

A, lateral cross-sectional area (cm?)
¢ concentration (moles/em?)
é Laplace transform of concentration

&40 Laplace transform of average concentration
c* interfacial concentration (moles/em?)

é Laplace transform of interfacial concentration
D diffusion coefficient (em?/sec)
G column characteristic
ky mass-transfer coefficient (cm/sec)
K distribution coefficient (moles/moles)
L column length (em)
n series variable
Nu Nusselt number
p Laplace transform variable
q defined by Eq. (7)
Q volumetric flow rate (em?3/sec)
R column radius to surface of stationary phase (em)
t time (sec)
lo defined by Eq. (10) (sec)
v defined by Eq. (25)
vy velocity of mobile phase (em/sec)

Ve column void volume (em?)
Ve retention volume (em?)
2 axial Cartesian coordinate (cm)

Greek Letters

v gamma function
€ volume fraction (cm?/cm?)
K partition coefficient (moles/cm?: moles/em3)
e mth normal statistical moment (sec™)
fim mth partial normal statistical moment (sec™)
T defined by Eq. (9)
¢ defined by Eq. (11)
Subscripts

c cutpoint
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7 component ¢
18 component ¢ in environment s (i.e., partition state| i:s
m power in computation of moments
R retention value
s environment s
11, 92, 43 specific partition states

1,2 specific phases
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